āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍⧝ āĻāϰ āϏāĻŽāĻžāϧāĻžāύ (Problem Weekly–29 with Solution)

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍⧝: āϏāĻ‚āĻ–ā§āϝāĻžāĻ­āĻžāĻŦ⧁āĻ• āϏ⧌āĻ­āĻŋāĻ• āϤāĻžāϰ āĻŽāĻžāĻŽāĻžāϰ āϏāĻžāĻĨ⧇ āĻļāĻŋāĻļ⧁āĻĒāĻžāĻ°ā§āϕ⧇ āĻŦā§‡ā§œāĻžāϤ⧇ āϗ⧇āϛ⧇, āϏāĻžāĻĨ⧇ āϤāĻžāϰ āĻŽāĻžāĻŽāĻžāϤ⧋ āĻ­āĻžāχāĻŦā§‹āύ⧇āϰāĻžāĻ“ āφāϛ⧇āĨ¤ āĻļāĻŋāĻļ⧁āĻĒāĻžāĻ°ā§āϕ⧇ ā§Ģ āĻŦāĻ›āϰ⧇āϰ āĻ•āĻŽ āĻŦ⧟āϏ⧀ āĻļāĻŋāĻļ⧁āĻĻ⧇āϰ āϜāĻ¨ā§āϝ āϕ⧋āύ āϟāĻŋāϕ⧇āϟ āϞāĻžāϗ⧇ āύāĻž āĻāĻŦāĻ‚ ā§§ā§Ž āĻŦāĻ›āϰāϰ⧇āϰ āĻ•āĻŽ āĻŦ⧟āϏ⧀ āĻļāĻŋāĻ•ā§āώāĻžāĻ°ā§āĻĨā§€āĻĻ⧇āϰ āϜāĻ¨ā§āϝ āĻ…āĻ°ā§āϧ⧇āĻ• āĻĻāĻžāĻŽā§‡ āϟāĻŋāϕ⧇āϟ āĻŦāĻŋāĻ•ā§āϰāĻŋ āĻ•āϰāĻž āĻšā§Ÿ, āĻŦāĻžāĻ•āĻŋāĻĻ⧇āϰ āϜāĻ¨ā§āϝ āĻĒ⧁āϰ⧋ āĻĻāĻžāĻŽā§‡ āϟāĻŋāϕ⧇āϟ āĻŦāĻŋāĻ•ā§āϰāĻŋ āĻšā§ŸāĨ¤ āϏ⧌āĻ­āĻŋāϕ⧇āϰ āĻŽāĻžāĻŽāĻž āϟāĻŋāϕ⧇āϟ āĻ•āĻžāωāĻ¨ā§āϟāĻžāϰ⧇ āĻ—āĻŋā§Ÿā§‡ āĻĒā§āϰāĻĨāĻŽā§‡ āύāĻŋāĻœā§‡āϰ āϟāĻŋāϕ⧇āϟ āĻ•āĻŋāύāϞ⧇āύ, āĻāϰāĻĒāϰ āĻŦāĻžāĻ•āĻŋāĻĻ⧇āϰ āϟāĻŋāϕ⧇āϟ āύāĻŋāϤ⧇ āϤāĻŋāύāĻŋ āĻ…āĻ¨ā§āϝ āĻāĻ•āϟāĻŋ āĻ•āĻžāωāĻ¨ā§āϟāĻžāϰ⧇ āϗ⧇āϞ⧇āύāĨ¤ āĻ•āĻžāωāĻ¨ā§āϟāĻžāϰ⧇āϰ āϞ⧋āĻ•āϟāĻŋ āωāύāĻžāϕ⧇ āĻŦāĻžāĻ•āĻŋ āϏāĻŦāĻžāϰ āĻŦ⧟āϏ āϜāĻŋāĻœā§āĻžā§‡āϏ āĻ•āϰāϞ⧋, āĻĒ⧇āĻ›āύ āĻĨ⧇āϕ⧇ āϏ⧌āĻ­āĻŋāĻ• āωāĻ¤ā§āϤāϰ āĻĻāĻŋāϞ⧋: āφāĻŽāĻžāĻĻ⧇āϰ āϏāĻŦāĻžāϰ āĻŦ⧟āϏ⧇āϰ āϗ⧁āĻŖāĻĢāĻ˛Â ā§Šā§Žā§Ēā§Ļ (āϏ⧌āĻ­āĻŋāϕ⧇āϰ āĻŽāĻžāĻŽāĻž āĻŦāĻžāĻĻ⧇), āϏāĻŦāĻĨ⧇āϕ⧇ āĻŦ⧜ āϝ⧇, āϛ⧋āϟ āϜāύ⧇āϰ āĻŦ⧟āϏ⧇āϰ ā§Ē āϗ⧁āĻŖ āϏ⧇! āĻ•āĻžāωāĻ¨ā§āϟāĻžāϰ⧇āϰ āϞ⧋āĻ•āϟāĻŋ āĻ•āϤāĻ•ā§āώāĻŖ āϚāĻŋāĻ¨ā§āϤāĻž āĻ•āϰāϞ⧋, āĻāϰāĻĒāϰ āϏ⧌āĻ­āĻŋāϕ⧇āϰ āĻŽāĻžāĻŽāĻžāϕ⧇ āĻĒā§āĻ°ā§Ÿā§‹āϜāĻ¨ā§€ā§Ÿ āϟāĻŋāϕ⧇āϟ āĻĻāĻŋā§Ÿā§‡ āĻĻāĻŋāϞ, āϕ⧋āύ āϭ⧁āϞāĻ“ āĻšā§Ÿ āύāĻŋ!
āϤ⧁āĻŽāĻŋ āϕ⧀ āĻŦāϞāϤ⧇ āĻĒāĻžāϰāĻŦ⧇, āĻĒāĻžāĻ°ā§āϕ⧇ āϏ⧌āĻ­āĻŋāĻ•āϰāĻž āĻŽā§‹āϟ āĻ•āϤāϜāύ āĻ›āĻŋāϞ⧋? āϕ⧋āύ āĻĒā§āϰāĻ•āĻžāϰ⧇āϰ āϟāĻŋāϕ⧇āϟ āϤāĻžāϰāĻž āĻ•ā§ŸāϟāĻŋ āĻ•āϰ⧇ āĻ•āĻŋāύ⧇āĻ›āĻŋāϞ⧋?

Problem Weekly-29: Number-lover Sauvik is visiting a recreation park with his uncle and cousins. To enter the park, there is no ticket for children under 5 years, half-priced tickets for students under 18 years, and full-priced tickets are sold for Adults. Sauvik’s uncle bought his ticket first from the adult counter. Then he walked to another counter to buy tickets for the rest people. The checker at the counter asked him about their age, and Sauvik replied immediately like this: The product of our age is 3840 (except his uncle), and the age of the older person here is 4 times the age of the younger person! The checker has thought for a while, then provides Sauvik’s uncle with the required tickets without any mistake!
Can you tell us the number of people who were with Sauvik in the park (including himself)? How many tickets of each type his uncle bought for them?

 

āϏāĻŽāĻžāϧāĻžāύ: āĻāĻ•āϟ⧁ āĻ­āĻžāϞ⧋āĻ­āĻžāĻŦ⧇ āϚāĻŋāĻ¨ā§āϤāĻž āĻ•āϰāϞ⧇ āĻŦ⧁āĻāϤ⧇ āĻĒāĻžāϰāĻŦ⧇ āϝ⧇, āϏ⧌āĻ­āĻŋāĻ• āĻ“ āϤāĻžāϰ āĻŽāĻžāĻŽāĻžāϤ⧋ āĻ­āĻžāχāĻŦā§‹āύāĻĻ⧇āϰ āĻŦāϝāĻŧāϏ⧇āϰ āϗ⧁āĻŖāĻĢāϞ ā§Šā§Žā§Ēā§Ļ āϕ⧇ āϝāĻĻāĻŋ āĻŽā§ŒāϞāĻŋāĻ• āĻ‰ā§ŽāĻĒāĻžāĻĻāϕ⧇ (Prime Factorization) āĻŦāĻŋāĻļā§āϞ⧇āώāĻŖ āĻ•āϰāĻž āϝāĻžā§Ÿ, āϤāĻžāĻšāϞ⧇āχ āϏāĻŦāĻžāϰ āĻŦ⧟āϏ āĻŦ⧇āϰ āĻ•āϰāĻž āϏāĻŽā§āĻ­āĻŦ! āϤāĻžāĻšāϞ⧇, ā§Šā§Žā§Ēā§Ļ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϕ⧇ āφāĻŽāϰāĻž āύāĻŋāĻšā§‡āϰ āĻŽāϤ⧋ āĻ•āϰ⧇ āĻŽā§ŒāϞāĻŋāĻ• āĻ‰ā§ŽāĻĒāĻžāĻĻāϕ⧇ āĻŦāĻŋāĻļā§āϞ⧇āώāĻŖ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŋ:

ā§Šā§Žā§Ēā§Ļ = ⧍ × ⧍ × ⧍ × ⧍ × ⧍ × ⧍ × ⧍ × ⧍ × ā§Š × ā§Ģ = ⧍^ā§Ž × ā§ŠÂ Ã— ā§Ģ

āĻĒā§āϰāĻļā§āύāĻŽāϤ⧇, āϏ⧌āĻ­āĻŋāĻ•āĻĻ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āϏāĻŦāĻšā§‡ā§Ÿā§‡ āĻŦ⧜ āĻŦā§āϝāĻ•ā§āϤāĻŋāϟāĻŋ āϏāĻŦāĻšā§‡ā§Ÿā§‡ āϛ⧋āϟ āĻŦā§āϝāĻ•ā§āϤāĻŋāϰ āĻŦāϝāĻŧāϏ⧇āϰ ā§Ē āϗ⧁āĻŖāĨ¤ āϤāĻžāĻšāϞ⧇ ā§Šā§Žā§Ēā§Ļ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϰ āĻ‰ā§ŽāĻĒāĻžāĻĻāϕ⧇ āĻŦāĻŋāĻļā§āϞ⧇āώāĻŖ āφāĻŽāϰāĻž āφāϰ⧇āĻ•āĻŦāĻžāϰ āϖ⧇āϝāĻŧāĻžāϞ āĻ•āϰāĻŋ,

ā§Šā§Žā§Ēā§Ļ = ⧍^ā§Ž × ā§ŠÂ Ã— ā§Ģ
= ⧍^ā§Ŧ × ⧍^⧍ × ā§Š × ā§Ģ
= ⧍^ā§Ē × ⧍^⧍ × ⧍^⧍ × ā§Š × ā§Ģ

āĻāĻ–āύ āĻ–ā§‡ā§ŸāĻžāϞ āĻ•āϰ⧋, āĻļāĻ°ā§āϤāĻŽāϤ⧇ āϝāĻĻāĻŋ āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āϛ⧋āϟ āĻŽāĻžāύ⧁āώāϟāĻŋāϰ āĻŦāϝāĻŧāϏ ā§§ āĻŦāĻ›āϰ āĻšāϝāĻŧ, āϤāĻŦ⧇ āϏāĻŦāϚāĻžāχāϤ⧇ āĻŦāĻĄāĻŧ āĻŽāĻžāύ⧁āώāϟāĻŋāϰ āĻŦāϝāĻŧāϏ āĻšāĻ“āϝāĻŧāĻžāϰ āĻ•āĻĨāĻž ā§Ē āĻŦāĻ›āϰāĨ¤ āĻ•āĻŋāĻ¨ā§āϤ⧁ āφāĻŽāϰāĻž āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ•āϗ⧁āϞ⧋ āϞāĻ•ā§āĻˇā§āϝ āĻ•āϰāϞ⧇ āĻĻ⧇āĻ–āϤ⧇ āĻĒāĻžāĻšā§āĻ›āĻŋ, āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ āĻŽā§ŒāϞāĻŋāĻ• āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ• āĻšāĻšā§āϛ⧇ ā§ĢāĨ¤ āϏ⧁āϤāϰāĻžāĻ‚ āϏ⧌āĻ­āĻŋāĻ• āĻāĻŦāĻ‚ āϤāĻžāϰ āĻŽāĻžāĻŽāĻžāϤ⧋ āĻ­āĻžāχāĻŦā§‹āύāĻĻ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āĻ•āĻžāϰ⧋ āĻŦāϝāĻŧāϏāχ āĻāĻ• āĻŦāĻ›āϰ āĻšāĻ“ā§ŸāĻž āϏāĻŽā§āĻ­āĻŦ āύāĻž! āϝāĻĻāĻŋ āĻ•āĻžāϰ⧋ āĻŦāϝāĻŧāϏ ⧍ āĻŦāĻ›āϰ āĻšāϝāĻŧ, āϏāĻ°ā§āĻŦā§‹āĻšā§āϚ āĻŦāϝāĻŧāϏ⧇āϰ āĻŦā§āϝāĻ•ā§āϤāĻŋ āĻšāϤ⧇ āĻšāĻŦ⧇ ā§Ž āĻŦāĻ›āϰ⧇āϰāĨ¤ āϏ⧇āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āφāĻŽāϰāĻž āϞāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŋ,

ā§Šā§Žā§Ēā§Ļ = ⧍ × ⧍^⧍ × ⧍^⧍ × ⧍^ā§Š × ā§ŠÂ Ã— ā§Ģ
= ⧍ × ā§Ē × ā§Ē × ā§Ž × ā§Š × ā§Ģ
(āĻ āϗ⧁āĻŖāĻĢāϞāϕ⧇ āϚāĻžāχāϞ⧇ āĻāĻ­āĻžāĻŦ⧇āĻ“ āϞāĻŋāĻ–āĻž āϝāĻžā§Ÿ: ⧍ × ⧍ × ā§Ē × ā§Ž × ā§Ŧ × ā§Ģ)

āĻāĻ–āĻžāύ āĻĨ⧇āϕ⧇ āĻĻ⧇āĻ–āĻž āϝāĻžāĻšā§āϛ⧇ āϝ⧇, āϏ⧌āĻ­āĻŋāĻ• āĻ“ āϤāĻžāϰ āĻŽāĻžāĻŽāĻžāϤ⧋ āĻ­āĻžāχāĻŦā§‹āύ āĻŽāĻŋāϞ⧇ āĻĒāĻžāĻ°ā§āϕ⧇ āĻŽā§‹āϟ ā§Ŧ āϜāύ āĻ›āĻŋāϞ⧋āĨ¤ āĻāĻĻ⧇āϰ āĻŦāϝāĻŧāϏ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ ⧍ āĻŦāĻ›āϰ, ā§Š āĻŦāĻ›āϰ, ā§Ē āĻŦāĻ›āϰ, ā§Ē āĻŦāĻ›āϰ, ā§Ģ āĻŦāĻ›āϰ āĻāĻŦāĻ‚ ā§Ž āĻŦāĻ›āϰāĨ¤ āĻāĻ–āĻžāύ āĻĨ⧇āϕ⧇ ā§Ē āϜāύāχ āĻĢā§āϰāĻŋ āϟāĻŋāϕ⧇āĻŸā§‡ āĻĒāĻžāĻ°ā§āϕ⧇ āĻĸ⧁āĻ•āϤ⧇ āĻĒāĻžāϰāϤ⧋, āĻĻ⧁āχāϜāύ⧇āϰ āϜāĻ¨ā§āϝ āĻ…āĻ°ā§āϧ⧇āĻ• āĻĻāĻžāĻŽā§‡ āϟāĻŋāϕ⧇āϟ āϕ⧇āύāĻž āϞāĻžāĻ—āϤ⧋āĨ¤

āĻĒā§āϰāĻļā§āύ āĻšāĻšā§āϛ⧇, āĻāϟāĻžāχ āϕ⧀ āĻāĻ•āĻŽāĻžāĻ¤ā§āϰ āωāĻ¤ā§āϤāϰ? āύāĻžāĻ•āĻŋ āĻ­āĻŋāĻ¨ā§āύ āωāĻ¤ā§āϤāϰāĻ“ āϏāĻŽā§āĻ­āĻŦ? āϞāĻŋāĻ–āĻžāϰ āĻŦāĻžāĻ•āĻŋ āĻ…āĻ‚āĻļ āĻĒ⧜āĻžāϰ āφāϗ⧇ āĻāĻ•āϟ⧁ āϭ⧇āĻŦ⧇ āĻĻ⧇āĻ–ā§‹ āϤ⧋!

āĻ–ā§‡ā§ŸāĻžāϞ āĻ•āϰ⧋, āϏāĻŦāĻšā§‡ā§Ÿā§‡ āϛ⧋āϟ āĻŦā§āϝāĻ•ā§āϤāĻŋāϰ āĻŦ⧟āϏ āϝāĻĻāĻŋ ā§Š āĻŦāĻ›āϰ āĻšāϝāĻŧ, āϤāĻŦ⧇ āϏāĻŦāϚāĻžāχāϤ⧇ āĻŦāĻĄāĻŧ āϝ⧇ āϤāĻžāϰ āĻŦāϝāĻŧāϏ āĻšāϤ⧇ āĻšāĻŦ⧇ ⧧⧍ āĻŦāĻ›āϰ āϝāĻž āĻ…āϏāĻŽā§āĻ­āĻŦ! āĻ•āĻžāϰāĻŖ āφāĻŽāϰāĻž āĻ‰ā§ŽāĻĒāĻžāĻĻāϕ⧇ āĻŦāĻŋāĻļā§āϞ⧇āώāĻŖ āĻĨ⧇āϕ⧇ āĻĻ⧇āĻ–āϤ⧇ āĻĒāĻžāĻšā§āĻ›āĻŋ, ā§Š āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ• āĻšāĻŋāϏ⧇āĻŦ⧇ āφāϛ⧇ āĻŽāĻžāĻ¤ā§āϰ ā§§ āĻŦāĻžāϰ, ā§Š āĻāϰ āϚāĻžāϰāϗ⧁āĻŖ āĻŦāĻž ⧧⧍ āĻĒ⧇āϤ⧇ āĻšāϞ⧇ āĻ…āĻ¨ā§āϤāϤ āφāϰ⧋ āĻāĻ•āϟāĻŋ ā§Š āĻāϰ āĻĒā§āĻ°ā§Ÿā§‹āϜāύ āĻšāĻŦ⧇āĨ¤

āĻ•āĻŋāĻ¨ā§āϤ⧁ āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āϛ⧋āϟ āĻŽāĻžāύ⧁āώāϟāĻŋāϰ āĻŦāϝāĻŧāϏ āϝāĻĻāĻŋ ā§Ē āĻŦāĻ›āϰ āĻšāϝāĻŧ āϤāĻŦ⧇ āϏāĻŦāĻšā§‡āϝāĻŧ⧇ āĻŦāĻĄāĻŧ āĻŽāĻžāύ⧁āώāϟāĻŋāϰ āĻŦāϝāĻŧāϏ āĻšāϤ⧇ āĻšāĻŦ⧇ ā§§ā§Ŧ āĻŦāĻ›āϰ, āϝāĻž ā§Šā§Žā§Ēā§Ļ āĻāϰ āĻŽā§ŒāϞāĻŋāĻ• āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ• āϏāĻŽā§‚āĻšāϕ⧇ āύāϤ⧁āύ āĻ•āϰ⧇ āϏāĻžāϜāĻžāϞ⧇ āϏāĻŽā§āĻ­āĻŦ āĻšā§Ÿ! āφāĻŽāϰāĻž āĻšāĻŋāϏ⧇āĻŦ āĻ•āϰ⧇ āĻĒāĻžāχ,

  ā§Šā§Žā§Ēā§Ļ = ⧍^ā§Ē × ⧍^⧍ × ⧍^⧍ × ā§Š × ā§Ģ
= ā§Ē × ā§Ē × ā§§ā§Ģ × ā§§ā§Ŧ
= ā§Ē × ā§Ģ × ⧧⧍ × ā§§ā§Ŧ
= ā§Ē × ā§Ŧ × ā§§ā§Ļ × ā§§ā§Ŧ

āωāĻĒāϰ⧇ āφāĻŽāϰāĻž āĻ•ā§Ÿā§‡āĻ•āϟāĻŋ āĻ­āĻŋāĻ¨ā§āύ āωāĻĒāĻžā§Ÿā§‡ āĻ‰ā§ŽāĻĒāĻžāĻĻāĻ•āϗ⧁āϞ⧋āϰ āϗ⧁āĻŖāĻĢāϞāϕ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰ⧇āĻ›āĻŋāĨ¤ āϏāĻ•āϞ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇āχ āϏ⧌āĻ­āĻŋāĻ• āĻ“ āϤāĻžāϰ āĻŽāĻžāĻŽāĻžāϤ⧋ āĻ­āĻžāχāĻŦā§‹āύāĻĻ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāϝāĻŧ ā§Ē āϜāύ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϟāĻŋāϕ⧇āĻŸā§‡āϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇ āĻšāĻŋāϏ⧇āĻŦ āĻ­āĻŋāĻ¨ā§āύ āĻ­āĻŋāĻ¨ā§āύ āĻšā§ŸāĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž āĻ•āĻ–āύ⧋ āĻ…āĻ°ā§āϧ⧇āĻ• āĻĻāĻžāĻŽā§‡āϰ ⧍āϟāĻŋ āϟāĻŋāϕ⧇āϟ āĻ•āĻŋāύāϤ⧇ āĻšāĻŦ⧇, āĻ•āĻ–āύ⧋ ā§ŠāϟāĻŋ āĻ•āĻŋāύāϤ⧇ āĻšāĻŦ⧇ āχāĻ¤ā§āϝāĻžāĻĻāĻŋāĨ¤ āϤ⧋āĻŽāϰāĻž āϚāĻžāχāϞ⧇ āφāϰ⧋ āϕ⧋āύ āωāĻ¤ā§āϤāϰ āĻšāĻ“ā§ŸāĻž āϏāĻŽā§āĻ­āĻŦ āĻ•āĻŋ āύāĻž āϏ⧇āϟāĻž āϭ⧇āĻŦ⧇ āĻĻ⧇āĻ–āϤ⧇ āĻĒāĻžāϰ⧋āĨ¤ āĻĒāĻžāĻļāĻžāĻĒāĻžāĻļāĻŋ, āϏāĻŦāĻšā§‡ā§Ÿā§‡ āĻ•āĻŽ āĻ•āĻŋāĻ‚āĻŦāĻž āϏāĻŦāĻšā§‡ā§Ÿā§‡ āĻŦ⧇āĻļāĻŋ āĻ•ā§ŸāϟāĻŋ āϟāĻŋāϕ⧇āϟ āĻ•āĻŋāύ⧇ āĻĒāĻžāĻ°ā§āϕ⧇ āĻĒā§āϰāĻŦ⧇āĻļ āĻ•āϰāĻž āϝāĻžāĻŦ⧇ āϏ⧇āϟāĻžāĻ“ āĻšāĻŋāϏ⧇āĻŦ āĻ•āϰāϤ⧇ āĻĒāĻžāϰ⧋āĨ¤

āĻ…āύ⧇āϕ⧇āχ āφāĻŽāĻžāĻĻ⧇āϰ āĻ•āĻžāϛ⧇ āĻāχ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋāϰ āϏāĻŽāĻžāϧāĻžāύ āĻĒāĻžāĻ āĻŋā§Ÿā§‡āϛ⧇, āϏāĻŦāĻžāϰ āĻ¸ā§āĻŦāϤāσāĻ¸ā§āĻĢā§‚āĻ°ā§āϤ āĻ…āĻ‚āĻļāĻ—ā§āϰāĻšāĻŖ āφāĻŽāĻžāĻĻ⧇āϰ āĻ…āĻ­āĻŋāĻ­ā§‚āϤ āĻ•āϰ⧇āϛ⧇āĨ¤ āϤāĻŦ⧇ āĻ•āĻžāϰ āϏāĻ āĻŋāĻ• āωāĻ¤ā§āϤāϰ āφāĻŽāϰāĻž āĻĒāĻžāχ āύāĻŋ, āϤāĻžāχ āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍⧝ āĻ āĻ•āĻžāωāϕ⧇ āĻŦāĻŋāĻœā§Ÿā§€ āĻ˜ā§‹āώāĻŖāĻž āĻ•āϰāĻž āϗ⧇āϞ āύāĻž!

āϝāĻžāϰāĻž āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋāϰ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻžāϰ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰ⧇āϛ⧋, āϏāĻŦāĻžāχāϕ⧇ āĻ…āĻ­āĻŋāύāĻ¨ā§āĻĻāύāĨ¤ āφāĻļāĻž āĻ•āϰāĻŋ āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āϏāĻŽāĻ¸ā§āϝāĻž āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āĻāχ āĻšā§‡āĻˇā§āϟāĻž āĻ…āĻŦā§āϝāĻžāĻšāϤ āĻĨāĻžāĻ•āĻŦ⧇āĨ¤ āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āϏāĻŦāĻžāϰ āϏ⧇āϕ⧇āĻ¨ā§āĻĄ āĻĄāĻŋāĻĢāĻžāϰ⧇āĻ¨ā§āϏāĻŋāϝāĻŧāĻžāϞ āύ⧇āϗ⧇āϟāĻŋāĻ­ āĻšā§‹āĻ•!

(āφāĻŽāĻžāĻĻ⧇āϰ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž āĻĻ⧇āĻ–āĻ¤ā§‡Â āĻāχ āϞāĻŋāĻ™ā§āϕ⧇ āĻ•ā§āϞāĻŋāĻ• āĻ•āϰ⧁āύāĨ¤)

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-ā§¨ā§Ž āĻāϰ āϏāĻŽāĻžāϧāĻžāύ (Problem Weekly–28 with Solution)

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-ā§¨ā§Ž: āϏāĻ‚āĻ–ā§āϝāĻžāĻ­āĻžāĻŦ⧁āĻ• āϏ⧌āĻ­āĻŋāĻ• āĻŦāϰāĻžāĻŦāϰ⧇āϰ āĻŽāϤ āφāϜāϕ⧇āĻ“ āϏāĻ‚āĻ–ā§āϝāĻž āύāĻŋā§Ÿā§‡ āĻ­āĻžāĻŦāϛ⧇āĨ¤ āϏ⧇ āύāĻŋāĻœā§‡āϰ āĻ–āĻžāϤāĻžā§Ÿ āĻāĻ•āϟāĻŋ āϤāĻŋāύ-āĻ…āĻ‚āϕ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž “A” āϞāĻŋāĻ–āϞ⧋āĨ¤ āφāĻŦāĻžāϰ āϏ⧇ āĻ–ā§‡ā§ŸāĻžāϞ āĻ•āϰāϞ⧋ āϝ⧇, āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϰ āĻ…āĻ‚āĻ•āϗ⧁āϞ⧋ āωāĻ˛ā§āϟāĻŋā§Ÿā§‡ āϞāĻŋāĻ–āϞ⧇ āφāϰ⧇āĻ•āϟāĻŋ āύāϤ⧁āύ āϤāĻŋāύ āĻ…āĻ‚āϕ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž “B” āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§ŸāĨ¤ āϏ⧌āĻ­āĻŋāĻ• āĻšāĻŋāϏ⧇āĻŦ āĻ•āϰ⧇ āĻĻ⧇āĻ–āϞ⧋, āĻ āĻĻ⧁āχāϟāĻŋ āϤāĻŋāύ āĻ…āĻ‚āϕ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž āϝ⧋āĻ— āĻ•āϰāϞ⧇ āϝ⧋āĻ—āĻĢāĻ˛Â 1656  āĻšā§ŸāĨ¤
āφāĻšā§āĻ›āĻž, āϏ⧌āĻ­āĻŋāĻ• āĻĒā§āϰāĻĨāĻŽā§‡ āϕ⧋āύ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āϞāĻŋāϖ⧇āĻ›āĻŋāϞ⧋ āϏ⧇āϟāĻž āϕ⧀ āϤ⧁āĻŽāĻŋ āĻŦāϞāϤ⧇ āĻĒāĻžāϰāĻŦ⧇?

Problem Weekly-28: Number-lover Souvik is thinking about numbers as always. He has written a random three-digit number “A” in his notebook. Again, he has noticed that if the digits of the number “A” are reversed, a three-digit number “B” is obtained. Then Sauvik adds these two three-digit numbers and has got the sum to be 1656.
Can you tell us which number Souvik wrote at first?

 

āϏāĻŽāĻžāϧāĻžāύ: āϝ⧇āĻšā§‡āϤ⧁ A āĻāĻ•āϟāĻŋ āϤāĻŋāύ āĻ…āĻ‚āϕ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž āϤāĻžāχ āφāĻŽāϰāĻž āϞāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŋ-

A = 100a + 10b + c 

[āĻāĻ–āĻžāύ⧇ a, c āĻāϰ āĻŽāĻžāύ 0 āĻšāĻŦ⧇ āύāĻž, āĻāĻĻ⧇āϰ āĻŽāĻžāύ 9 āĻāϰ āϏāĻŽāĻžāύ āĻŦāĻž āϤāĻžāϰ āĻĨ⧇āϕ⧇ āϛ⧋āϟ āĻšāĻŦ⧇, āĻāĻŦāĻ‚Â  0 <= b <= 9 āĻšāĻŦ⧇]

āϝ⧇āĻŽāύ 714 āϕ⧇ āφāĻŽāϰāĻž āĻāĻ­āĻžāĻŦ⧇ āϞāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŋ-

714 = 7 × 100 + 1 × 10 + 4

āϝ⧇āĻšā§‡āϤ⧁ A āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϰ āĻ…āĻ™ā§āĻ•āϗ⧁āϞ⧋ āωāĻ˛ā§āϟāĻŋā§Ÿā§‡ āϞāĻŋāĻ–āϞ⧇ āĻāĻ•āϟāĻŋ āϤāĻŋāύ āĻ…āĻ™ā§āϕ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻž B āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§Ÿ, āϤāĻžāχ āφāĻŽāϰāĻž āϞāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŋ-

B = 100c + 10b + a

āĻĒā§āϰāĻļā§āύāĻŽāϤ⧇, 

A + B = 1656

āĻŦāĻž, 100a + 10b + c + 100c + 10b + a = 1656

āĻŦāĻž, 101a + 20b + 101c  = 1656

āĻŦāĻž, 20b = 1656 – 101(a+c)

āĻŦāĻž, b = [1656 – 101 (a+c)] / 20

āϝ⧇āĻšā§‡āϤ⧁ b āĻāĻ•āϟāĻŋ āĻĒā§‚āĻ°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻž, āϤāĻžāϰ āĻŽāĻžāύ⧇ āĻĄāĻžāύāĻĒāĻžāĻļ⧇āϰ āĻ­āĻ—ā§āύāĻžāĻ‚āĻļ⧇āϰ āϞāĻŦāϕ⧇ āĻ…āĻŦāĻļā§āϝāχ 20 āĻĻā§āĻŦāĻžāϰāĻž āĻŦāĻŋāĻ­āĻžāĻœā§āϝ āĻšāϤ⧇ āĻšāĻŦ⧇ āĻŦāĻž āϞāĻŦ⧇āϰ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋāϰ āĻāĻ•āĻ• āĻ¸ā§āĻĨāĻžāĻ¨ā§€ā§Ÿ āĻ…āĻ™ā§āĻ• 1 āĻšāϤ⧇ āĻšāĻŦ⧇āĨ¤ (āĻāϟāĻž āϕ⧇āύ āύāĻŋāĻļā§āϚāĻŋāϤ āĻ•āϰ⧇ āĻŦāϞāϤ⧇ āĻĒāĻžāϰāϞāĻžāĻŽ? āϚāĻŋāĻ¨ā§āϤāĻž āĻ•āϰ⧇ āĻĻ⧇āĻ–ā§‹ āϤ⧋!)

āϤāĻžāĻšāϞ⧇, (a+c) āĻāϰ āĻŽāĻžāύ 6 āĻŦāĻž 16 āĻšāϤ⧇ āĻšāĻŦ⧇āĨ¤

āĻ•āĻŋāĻ¨ā§āϤ⧁ (a+c) āĻāϰ āĻŽāĻžāύ 6 āĻšāϞ⧇ b āĻāϰ āĻŽāĻžāύ 9 āĻāϰ āĻšā§‡ā§Ÿā§‡ āĻŦ⧜ āĻšā§Ÿā§‡ āϝāĻžā§Ÿ āϝ⧇āϟāĻž āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϤāĻĨā§āϝ āĻ…āύ⧁āϏāĻžāϰ⧇ āϏāĻŽā§āĻ­āĻŦ āύāĻžāĨ¤ (āĻ•āĻžāϰāĻŖ b āĻāϰ āĻŽāĻžāύ 5 āĻšāϤ⧇ āĻĒāĻžāϰāĻŦ⧇āĨ¤)

āϤāĻžāĻšāϞ⧇ āĻŦāϞāĻž āϝāĻžā§Ÿ,

(a+c) = 16

āĻāĻŦāĻ‚ b āĻāϰ āĻŽāĻžāύ āĻšāĻŦ⧇- 

b = [1656 – (101 × 16)] / 20

āϝ⧇āĻšā§‡āϤ⧁ (a+c) = 16, āϤāĻžāĻšāϞ⧇ a āĻāĻŦāĻ‚ c āĻāϰ āϏāĻŽā§āĻ­āĻžāĻŦā§āϝ āĻŽāĻžāύ āĻšāĻŦ⧇-

(a, c) = (9, 7) , (8, 8), (7, 9) 

āϤāĻžāĻšāϞ⧇ āϏ⧌āĻ­āĻŋāĻ• āĻļ⧁āϰ⧁āϤ⧇ āϝ⧇ āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āϞāĻŋāϖ⧇āĻ›āĻŋāϞ āϤāĻžāϰ āϏāĻŽā§āĻ­āĻžāĻŦā§āϝ āĻŽāĻžāύ āĻšāϤ⧇ āĻĒāĻžāϰ⧇,  927 āĻŦāĻž 828 āĻŦāĻž 729āĨ¤

āϏ⧁āϤāϰāĻžāĻ‚, āωāĻĒāϰ⧇āϰ āϤāĻŋāύāϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāĻ‡Â āĻšāĻšā§āϛ⧇ āφāĻŽāĻžāĻĻ⧇āϰ āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-ā§¨ā§Ž āĻāϰ āωāĻ¤ā§āϤāϰ!

āĻ…āύ⧇āϕ⧇āχ āφāĻŽāĻžāĻĻ⧇āϰ āĻ•āĻžāϛ⧇ āĻāχ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋāϰ āϏāĻŽāĻžāϧāĻžāύ āĻĒāĻžāĻ āĻŋā§Ÿā§‡āϛ⧇, āϏāĻŦāĻžāϰ āĻ¸ā§āĻŦāϤāσāĻ¸ā§āĻĢā§‚āĻ°ā§āϤ āĻ…āĻ‚āĻļāĻ—ā§āϰāĻšāĻŖ āφāĻŽāĻžāĻĻ⧇āϰ āĻ…āĻ­āĻŋāĻ­ā§‚āϤ āĻ•āϰ⧇āϛ⧇āĨ¤ āϤāĻŦ⧇ āφāĻŽāϰāĻž ā§Š āϜāύ⧇āϰ āϏāĻ āĻŋāĻ• āωāĻ¤ā§āϤāϰ āĻĒā§‡ā§Ÿā§‡āĻ›āĻŋ, āϤāĻžāχ āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-ā§¨ā§Ž āĻ āĻŦāĻŋāĻœā§Ÿā§€ āϤāĻŋāύāϜāύ!

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-ā§¨ā§Ž (Problem Weekly-28) āĻāϰ āĻŦāĻŋāĻœā§Ÿā§€

āĻ›āĻŦāĻŋ: āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-ā§¨ā§Ž āĻāϰ āĻŦāĻŋāĻœā§Ÿā§€ āϤāĻžāϞāĻŋāĻ•āĻž

āϝāĻžāϰāĻž āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋāϰ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻžāϰ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰ⧇āϛ⧋, āϏāĻŦāĻžāχāϕ⧇ āĻ…āĻ­āĻŋāύāĻ¨ā§āĻĻāύāĨ¤ āφāĻļāĻž āĻ•āϰāĻŋ āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āϏāĻŽāĻ¸ā§āϝāĻž āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āĻāχ āĻšā§‡āĻˇā§āϟāĻž āĻ…āĻŦā§āϝāĻžāĻšāϤ āĻĨāĻžāĻ•āĻŦ⧇āĨ¤ āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āϏāĻŦāĻžāϰ āϏ⧇āϕ⧇āĻ¨ā§āĻĄ āĻĄāĻŋāĻĢāĻžāϰ⧇āĻ¨ā§āϏāĻŋāϝāĻŧāĻžāϞ āύ⧇āϗ⧇āϟāĻŋāĻ­ āĻšā§‹āĻ•!

(āφāĻŽāĻžāĻĻ⧇āϰ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž āĻĻ⧇āĻ–āĻ¤ā§‡Â āĻāχ āϞāĻŋāĻ™ā§āϕ⧇ āĻ•ā§āϞāĻŋāĻ• āĻ•āϰ⧁āύāĨ¤)

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍⧭ āĻāϰ āϏāĻŽāĻžāϧāĻžāύ (Problem Weekly–27 with Solution)

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍⧭:  āϏāĻ‚āĻ–ā§āϝāĻžāĻ­āĻžāĻŦ⧁āĻ• āϏ⧌āĻ­āĻŋāĻ• āϏāĻŽā§āĻĒā§āϰāϤāĻŋ āĻŦā§€āϜāĻ—āĻŖāĻŋāϤ⧇āϰ āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āϏ⧂āĻ¤ā§āϰ, āύāĻžāύāĻžāύ āϰāĻ•āĻŽā§‡āϰ āϏāĻŽā§€āĻ•āϰāĻŖ, āĻāĻŦāĻ‚ āϏ⧇āϗ⧁āϞ⧋ āĻ•āĻŋāĻ­āĻžāĻŦ⧇ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻž āϝāĻžā§Ÿ āϏ⧇ āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇ āϜāĻžāύāϤ⧇ āĻĒ⧇āϰ⧇āϛ⧇āĨ¤ āĻāĻ–āύ āϏ⧇ āĻ…āĻŦāϏāϰ āϏāĻŽā§Ÿā§‡ āĻŦā§€āϜāĻ—āĻŖāĻŋāϤ⧇āϰ āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āϏāĻŽā§€āĻ•āϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻžāϰ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰ⧇āĨ¤ āϏ⧌āĻ­āĻŋāϕ⧇āϰ āĻŦāĻ¨ā§āϧ⧁ āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋāĻ• āϜāĻžāĻŽāĻŋ āϏ⧌āĻ­āĻŋāĻ•āϕ⧇ āĻāĻ•āϟāĻŋ āϤāĻŋāύ āϚāϞāϕ⧇āϰ āϏāĻŽā§€āĻ•āϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāϤ⧇ āĻĻāĻŋāϞ⧋āĨ¤ āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋ āĻāϰāĻ•āĻŽ:

x + 2y – z = 5

3x + 2y + z = 11

x(x+4y) + (2y+z)(2y-z) = 15

x^3 + y^3 + z^3 = ? 
(āĻāĻ–āĻžāĻ¨ā§‡Â x, y āĻāĻŦāĻ‚Â z āϤāĻŋāύāϟāĻŋ āĻĒā§‚āĻ°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻž)

āϏ⧌āĻ­āĻŋāĻ• āĻ…āύ⧇āĻ•āĻ•ā§āώāĻŖ āϧāϰ⧇ āĻāϟāĻž āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻžāϰ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰāϞ⧋āĨ¤ āϏ⧌āĻ­āĻŋāĻ• āϏāĻŽā§€āĻ•āϰāĻŖ āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āϜāĻ¨ā§āϝ āϝāĻž āϝāĻž āĻļāĻŋāϖ⧇āĻ›āĻŋāϞ⧋, āϝ⧇āĻŽāύ- āĻ…āĻĒāύ⧟āĻ¨Â āĻĒāĻĻā§āϧāϤāĻŋ āĻŦāĻžÂ āĻĒā§āϰāϤāĻŋāĻ¸ā§āĻĨāĻžāĻĒāĻ¨Â āĻĒāĻĻā§āϧāϤāĻŋ ,āϏ⧇āϗ⧁āϞ⧋ āĻĒā§āĻ°ā§Ÿā§‹āĻ— āĻ•āϰ⧇ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻžāϰ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰāϞ⧋āĨ¤ āϤ⧋āĻŽāϰāĻž āĻ•āĻŋ āϕ⧋āύāĻ­āĻžāĻŦ⧇ āϏ⧌āĻ­āĻŋāĻ•āϕ⧇ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŦ⧇?

Problem Weekly-27: Number-lover Souvik has recently learned about algebra formulas, different types of equations, and how to solve those things. Now, he tries to solve various problems related to equations in his leisure time. Souvik’s friend Geometric Jami asked Souvik to solve a three-variable equation. The problem is like this –

x + 2y – z = 5

3x + 2y + z = 11

x(x+4y) + (2y+z)(2y-z) = 15

x^3 + y^3 + z^3 = ?  
(Here,  x, y, and z are three integers.)

Sauvik has tried for a long time to solve this problem. He has applied the concepts that he learned previously such as the elimination or substitution method of solving equations. Can you help Souvik to solve this problem?

 

āϏāĻŽāĻžāϧāĻžāύ: āĻĒā§āϰāĻĻāĻ¤ā§āϤ āϤāĻŋāύāϟāĻŋ āϏāĻŽā§€āϰāĻ•āĻŖ āĻāϰāĻ•āĻŽ-

x + 2y – z = 5 …..(i)

3x + 2y + z = 11 …..(ii)

x(x+4y) + (2y+z)(2y-z) = 15 …..(iii)

āĻāĻŦāĻžāϰ āϏāĻŽā§€āĻ•āϰāĻŖ (i) āĻāĻŦāĻ‚ āϏāĻŽā§€āĻ•āϰāĻŖ (ii) āϝ⧋āĻ— āĻ•āϰ⧇ āĻĒāĻžāχ,

x + 2y – z + 3x + 2y + z = 11 + 5

āĻŦāĻž, 4x + 4y = 16

āĻŦāĻž,  x + y = 4

āĻŦāĻž, y = 4 – x …..(iv)

āϏāĻŽā§€āĻ•āϰāĻŖ (i) āĻĨ⧇āϕ⧇ āφāĻŽāϰāĻž āĻĒāĻžāχ, 

x + 2y – z = 5

āĻŦāĻž, 2y – z = 5 – x …..(v)

āϏāĻŽā§€āĻ•āϰāĻŖ (ii) āĻĨ⧇āϕ⧇ āφāĻŽāϰāĻž āĻĒāĻžāχ, 

3x + 2y + z = 11

āĻŦāĻž, 2y + z = 11 – 3x …..(vii)

āĻāĻ–āύ āϏāĻŽā§€āĻ•āϰāĻŖ (iii) āĻ āϏāĻŦāϗ⧁āϞ⧋ āĻŽāĻžāύ āĻŦāϏāĻŋā§Ÿā§‡ āĻĒāĻžāχ,

x(x+4y) + (2y+z)(2y-z) = 15

āĻŦāĻž, x (x + 4 [4 – x]) + (5 – x) (11 – 3x) = 15

āĻŦāĻž, x (x + 16 – 4x) + (5 – x) (11 – 3x) = 15

āĻŦāĻž, x (16 – 3x) + (5 – x) (11 – 3x) = 15

āĻŦāĻž, 16x – 3x2 + 55 – 15x – 11x + 3x2 = 15

āĻŦāĻž, 16x – 26x + 40 = 0

āĻŦāĻž, x= 4

āϤāĻžāĻšāϞ⧇, x= 4 āϏāĻŽā§€āĻ•āϰāĻŖ (iv) āĻ āĻŦāϏāĻŋā§Ÿā§‡ āĻĒāĻžāχ, 

y = 4 – x

āĻŦāĻž, y = 4 – 4

āĻŦāĻž, y = 0

āĻāĻ•āχāĻ­āĻžāĻŦ⧇, āϏāĻŽā§€āĻ•āϰāĻŖ (i) āĻ x= 4 āĻāĻŦāĻ‚ y = 0 āĻŦāϏāĻŋā§Ÿā§‡ āĻĒāĻžāχ,

x + 2y – z = 5

āĻŦāĻž, z = x + 2y – 5

āĻŦāĻž, z = 4 + 2 × 0 – 5

āĻŦāĻž, z = -1

āĻāĻŦāĻžāϰ āϤāĻžāĻšāϞ⧇ āĻ…āĻŦāĻļāĻŋāĻˇā§āϟ āĻŦā§€āϜāĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϰāĻžāĻļāĻŋāϟāĻŋāϰ āĻŽāĻžāύ āĻŦ⧇āϰ āĻ•āϰ⧇ āĻĢ⧇āϞāĻŋ-

x^3 + y^3 + z^3

= 4^3 + 0^3 + (-1)^3 

= 64 – 1

= 63

āϏ⧁āϤāϰāĻžāĻ‚, 63 āĻšāĻšā§āϛ⧇ āφāĻŽāĻžāĻĻ⧇āϰ āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍⧭ āĻāϰ āωāĻ¤ā§āϤāϰ!

āĻ…āύ⧇āϕ⧇āχ āφāĻŽāĻžāĻĻ⧇āϰ āĻ•āĻžāϛ⧇ āĻāχ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋāϰ āϏāĻŽāĻžāϧāĻžāύ āĻĒāĻžāĻ āĻŋā§Ÿā§‡āϛ⧇, āϏāĻŦāĻžāϰ āĻ¸ā§āĻŦāϤāσāĻ¸ā§āĻĢā§‚āĻ°ā§āϤ āĻ…āĻ‚āĻļāĻ—ā§āϰāĻšāĻŖ āφāĻŽāĻžāĻĻ⧇āϰ āĻ…āĻ­āĻŋāĻ­ā§‚āϤ āĻ•āϰ⧇āϛ⧇āĨ¤ āϤāĻŦ⧇ āφāĻŽāϰāĻž ā§Ē āϜāύ⧇āϰ āϏāĻ āĻŋāĻ• āωāĻ¤ā§āϤāϰ āĻĒā§‡ā§Ÿā§‡āĻ›āĻŋ, āϤāĻžāχ āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍⧭ āĻ āĻŦāĻŋāĻœā§Ÿā§€ āϚāĻžāϰāϜāύ!

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍⧭ (Problem Weekly-27) āĻāϰ āĻŦāĻŋāĻœā§Ÿā§€

āĻ›āĻŦāĻŋ: āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍⧭ āĻāϰ āĻŦāĻŋāĻœā§Ÿā§€ āϤāĻžāϞāĻŋāĻ•āĻž

āϝāĻžāϰāĻž āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋāϰ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻžāϰ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰ⧇āϛ⧋, āϏāĻŦāĻžāχāϕ⧇ āĻ…āĻ­āĻŋāύāĻ¨ā§āĻĻāύāĨ¤ āφāĻļāĻž āĻ•āϰāĻŋ āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āϏāĻŽāĻ¸ā§āϝāĻž āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āĻāχ āĻšā§‡āĻˇā§āϟāĻž āĻ…āĻŦā§āϝāĻžāĻšāϤ āĻĨāĻžāĻ•āĻŦ⧇āĨ¤ āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āϏāĻŦāĻžāϰ āϏ⧇āϕ⧇āĻ¨ā§āĻĄ āĻĄāĻŋāĻĢāĻžāϰ⧇āĻ¨ā§āϏāĻŋāϝāĻŧāĻžāϞ āύ⧇āϗ⧇āϟāĻŋāĻ­ āĻšā§‹āĻ•!

(āφāĻŽāĻžāĻĻ⧇āϰ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž āĻĻ⧇āĻ–āĻ¤ā§‡Â āĻāχ āϞāĻŋāĻ™ā§āϕ⧇ āĻ•ā§āϞāĻŋāĻ• āĻ•āϰ⧁āύāĨ¤)

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ŧ āĻāϰ āϏāĻŽāĻžāϧāĻžāύ (Problem Weekly–26 with Solution)

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ŧ: āϏāĻ‚āĻ–ā§āϝāĻžāĻ­āĻžāĻŦ⧁āĻ• āϏ⧌āĻ­āĻŋāĻ• āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āĻŦ⧈āĻļāĻŋāĻˇā§āĻŸā§āϝ āύāĻŋā§Ÿā§‡ āĻ­āĻžāĻŦāϛ⧇, āϝ⧇āĻŽāύ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āϕ⧀ āĻŦāĻž āϝ⧌āĻ—āĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āϕ⧋āύāϗ⧁āϞ⧋ āĻāϏāĻŦāĨ¤ āωāĻĻāĻžāĻšāϰāĻŖ āĻšāĻŋāϏ⧇āĻŦ⧇ āĻŦāϞāĻž āϝāĻžā§Ÿ- ā§Ģ āĻāĻ•āϟāĻŋ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž, ā§Ŧ āĻšāϞ⧋ āϝ⧌āĻ—āĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāĨ¤ āφāĻŦāĻžāϰ, ⧍ āĻšāϞ⧋ āĻāĻ•āĻŽāĻžāĻ¤ā§āϰ āĻœā§‹ā§œ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž! āφāϰ⧇āĻ•āϟāĻž āĻŽāϜāĻžāϰ āĻŦāĻŋāώ⧟ āĻšāϞ⧋, āϏāĻ•āϞ āĻŦāĻŋāĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻž āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āύāĻžāĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž ⧍ āĻāϰ āĻšā§‡ā§Ÿā§‡ āĻŦ⧜ āϝ⧇āϕ⧋āύ āĻŽā§ŒāϞāĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻž āĻŦāĻŋāĻœā§‹ā§œ āĻšāĻŦ⧇āχ, āϤāĻŦ⧇ āĻŦāĻŋāĻœā§‹ā§œ āĻšāϞ⧇āχ āϏ⧇āϟāĻŋ āĻŽā§ŒāϞāĻŋāĻ• āĻšāĻŦ⧇ āĻāϰāĻ•āĻŽ āϏāĻŦāϏāĻŽā§Ÿ āϏāĻ¤ā§āϝāĻŋ āύāĻžāĨ¤ āĻŦā§āϝāĻžāĻĒāĻžāϰāϟāĻž āĻŦ⧇āĻļ āĻŽāϜāĻžāϰ āϤāĻžāχ āύāĻž!

āφāϜāϕ⧇ āϏāĻ•āĻžāϞ⧇ āϏ⧌āĻ­āĻŋāĻ• āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻĻ⧁āχāϟāĻŋ āĻŦāĻŋāĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āĻšāĻŋāϏ⧇āĻŦ⧇ āϞ⧇āĻ–āĻžāϰ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰāϛ⧇āĨ¤ āϝ⧇āĻŽāύ:

ā§§ā§Ž = ⧝+⧝

⧍ā§Ļ = ā§§ā§Š+ā§­ = ā§§ā§§+⧝ = ā§Ģ+ā§§ā§Ģ

ā§§ā§Ē = ā§§ā§§+ā§Š = ⧝+ā§Ģ = ā§­+ā§­

āϏ⧌āĻ­āĻŋāĻ• āĻšāĻ āĻžā§Ž āĻ•āϰ⧇ āĻāĻ•āϟāĻž āĻŦā§āϝāĻžāĻĒāĻžāϰ āĻ–ā§‡ā§ŸāĻžāϞ āĻ•āϰāϞ⧋- āĻ•āĻŋāϛ⧁ āĻ•āĻŋāϛ⧁ āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻž āφāϛ⧇ āϝāĻžāĻĻ⧇āϰāϕ⧇ āĻĻ⧁āχāϟāĻŋ āĻŦāĻŋāĻœā§‹ā§œ āϝ⧌āĻ—āĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāĻ˛Â  āĻšāĻŋāϏ⧇āĻŦ⧇ āϞ⧇āĻ–āĻž āϝāĻžā§Ÿ āύāĻž! āϝ⧇āĻŽāύ: ā§ŽÂ āĻ•āĻŋāĻ‚āĻŦāĻžÂ ā§§ā§ĒāĨ¤ āϏ⧌āĻ­āĻŋāĻ• āĻ‰ā§ŽāϏāĻžāĻšā§€ āĻšā§Ÿā§‡ āĻāϰ⧂āĻĒ āĻ•āϤāϗ⧁āϞ⧋ āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻž āφāϛ⧇, āϏ⧇āϗ⧁āϞ⧋ āϖ⧁āρāĻœā§‡ āĻŦ⧇āϰ āĻ•āϰāĻž āĻļ⧁āϰ⧁ āĻ•āϰāϞ⧋āĨ¤ āϤ⧋āĻŽāϰāĻžāĻ“ āϚāĻžāχāϞ⧇ āϏ⧌āĻ­āĻŋāϕ⧇āϰ āϏāĻžāĻĨ⧇ āϏāĻžāĻĨ⧇ āĻāχ āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋ āύāĻŋā§Ÿā§‡ āĻ­āĻžāĻŦāϤ⧇ āĻĒāĻžāϰ⧋-

“ āĻāĻŽāύ āĻ•āϤāϗ⧁āĻ˛ā§‹Â āϧāύāĻžāĻ¤ā§āĻŽāĻ• āĻœā§‹ā§œÂ āϏāĻ‚āĻ–ā§āϝāĻž āφāϛ⧇, āϝāĻžāĻĻ⧇āϰāĻ•ā§‡Â āĻĻ⧁āχāϟāĻŋ āĻŦāĻŋāĻœā§‹ā§œ āϝ⧌āĻ—āĻŋāĻ•Â āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āφāĻ•āĻžāϰ⧇ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āϝāĻžā§Ÿ āύāĻž?”

Problem Weekly-26: Number-lover Souvik is thinking about the properties of different numbers, like prime or composite numbers. For example, 5 is a prime number, and 6 is a composite number. Again, 2 is the only even prime number. Another interesting fact is that all odd numbers are not prime numbers. To elaborate on this we can say, that any prime number greater than 2 must be an odd number but an odd number may or may not be a prime number! Quite interesting, isn’t it?

However, today Souvik is trying to write different even numbers as the sum of two odd numbers. For example,

18 = 9 + 9

20=13+7=11+9=5+15

14=11+3=9+5=7+7

Sauvik suddenly noticed that some even numbers cannot be written as the sum of two odd composite numbers, like 8 or 14. Souvik has become curious to find out if there exist other even numbers too. You can also think of this problem like Souvik-

“How many positive even numbers are there that cannot be expressed as the sum of two odd composite numbers?”

 

āϏāĻŽāĻžāϧāĻžāύ: āĻļ⧁āϰ⧁āϤ⧇ āφāĻŽāϰāĻž āĻ•ā§Ÿā§‡āĻ•āϟāĻŋ āϛ⧋āϟ āϏāĻ‚āĻ–ā§āϝāĻž āύāĻŋā§Ÿā§‡ āϚāĻŋāĻ¨ā§āϤāĻž āĻ•āϰāĻŋāĨ¤ āϝ⧇āĻŽāύ : 40 āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϝ⧌āĻ—āĻŋāĻ• āĻŦāĻŋāĻœā§‹āĻĄāĻŧ āĻĒā§‚āĻ°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻž āĻšāϞ-

9,  5, 21, 25, 27, 33, 35, 39

āĻāĻ–āύ āĻļāĻ°ā§āϤāĻŽāϤ⧇, āĻāχ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋āϰ āϝ⧋āĻ—āĻĢāϞ āĻœā§‹āĻĄāĻŧāĻžāϝāĻŧ āύāĻŋāϞ⧇ āĻāĻŦāĻ‚ āϝ⧋āĻ—āĻĢāϞ⧇āϰ āĻĒ⧁āύāϰāĻžāĻŦ⧃āĻ¤ā§āϤāĻŋ āĻŦāĻž 50 āĻāϰ āωāĻĒāϰ⧇ āĻŽāĻžāύ āĻŦāĻžāĻĻ āĻĻāĻŋā§Ÿā§‡ āĻšāĻŋāϏ⧇āĻŦ āĻ•āϰ⧇ āφāĻŽāϰāĻž āĻĒāĻžāχ-

9 + 9 = 18

9 + 15 = 24

9 + 21 = 30

9 + 25 = 34

9 + 27 = 36

9 + 33 = 42

9 + 35 = 44

9 + 39 = 48

15 + 25 = 40

15 + 35 = 50

21 + 25 = 46

āωāĻĒāϰ⧇āϰ āϤāĻžāϞāĻŋāĻ•āĻž āĻĨ⧇āϕ⧇ āφāĻŽāϰāĻž āĻĻ⧇āĻ–āϤ⧇ āĻĒāĻžāĻšā§āĻ›āĻŋ āϝ⧇, 40 āĻāϰ āϛ⧋āϟ āϧāύāĻžāĻ¤ā§āĻŽāĻ• āĻĒā§‚āĻ°ā§āĻŖāϏāĻ‚āĻ–ā§āϝāĻžāϰ āϜāĻ¨ā§āϝ āύāĻŋāĻŽā§āύ⧇āϰ 14āϟāĻŋ āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āφāĻŽāϰāĻž āĻĻ⧁āχāϟāĻŋ āĻŦāĻŋāĻœā§‹ā§œ āϝ⧌āĻ—āĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āφāĻ•āĻžāϰ⧇ āϞāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŋ āύāĻž-

2, 4, 6, 8,10, 12, 14, 16, 20, 22, 26, 28, 32, 38

āĻŽāϜāĻžāϰ āĻŦā§āϝāĻžāĻĒāĻžāϰ āĻšāϞ⧋, ā§Ēā§Ļ āĻāϰ āĻšā§‡ā§Ÿā§‡ āĻŦ⧜ āϝ⧇āϕ⧋āύ āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āφāϏāϞ⧇ āĻĻ⧁āχāϟāĻŋ āϝ⧌āĻ—āĻŋāĻ• āĻŦāĻŋāĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āφāĻ•āĻžāϰ⧇ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻĒā§āϰāĻ•āĻžāĻļ āĻ•āϰāĻž āϝāĻžā§Ÿ! āĻ•āĻŋāϛ⧁ āωāĻĻāĻžāĻšāϰāĻŖ āϚāĻŋāĻ¨ā§āϤāĻž āĻ•āϰāĻž āϝāĻžāĻ•-

40 = 15 + 25

42 = 9 + 33

44 = 9 + 35

āφāĻŽāϰāĻž 44 āĻāϰ āĻšā§‡ā§Ÿā§‡ āĻŦ⧜ āϝ⧇āϕ⧋āύ āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻĻ⧁āχāϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āφāĻ•āĻžāϰ⧇ āϞāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŋ āϝāĻžāϰ āĻāĻ•āϟāĻŋ āĻšāĻŦ⧇ 6 āĻāϰ āϗ⧁āĻŖāĻŋāϤāĻ•, āĻ…āĻĒāϰ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāĻŦ⧇ 40 āĻŦāĻž 42 āĻŦāĻž 44 āĻāϰ āĻŽāĻ§ā§āϝ⧇ āϝ⧇ āϕ⧋āύ āĻāĻ•āϟāĻŋāĨ¤

āφāϰ⧇āĻ•āĻ­āĻžāĻŦ⧇ āĻŦāϞāĻž āϝāĻžā§Ÿ, 44 āĻāϰ āĻšā§‡ā§Ÿā§‡ āĻŦ⧜ āϝ⧇āϕ⧋āύ āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āφāĻŽāϰāĻž 6 āĻĻāĻŋā§Ÿā§‡ āĻ­āĻžāĻ— āĻ•āϰāϞ⧇ āĻ­āĻžāĻ—āĻļ⧇āώ āĻĒāĻžāĻŦā§‹ āϝāĻĨāĻžāĻ•ā§āϰāĻŽā§‡ 0, 2, 4 āĻāϰ āĻŽāĻ§ā§āϝ⧇ āϝ⧇ āϕ⧋āύ āĻāĻ•āϟāĻŋāĨ¤ āϝ⧇āĻŽāύ:

56 āϕ⧇ 6 āĻĻāĻŋā§Ÿā§‡ āĻ­āĻžāĻ— āĻ•āϰāϞ⧇ āĻ­āĻžāĻ—āĻļ⧇āώ āĻĨāĻžāĻ•āĻŦ⧇ 2

58 āϕ⧇ 6 āĻĻāĻŋā§Ÿā§‡ āĻ­āĻžāĻ— āĻ•āϰāϞ⧇ āĻ­āĻžāĻ—āĻļ⧇āώ āĻĨāĻžāĻ•āĻŦ⧇ 4

60 āϕ⧇ 6 āĻĻāĻŋā§Ÿā§‡ āĻ­āĻžāĻ— āĻ•āϰāϞ⧇ āĻ­āĻžāĻ—āĻļ⧇āώ āĻĨāĻžāĻ•āĻŦ⧇ 0

āϤāĻžāĻšāϞ⧇ āφāĻŽāϰāĻž āĻāχ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋ āĻāĻ­āĻžāĻŦ⧇ āϞāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŋ- 

 56 = 44 + 12

 58 = 40 + 18

60 = 42 + 18

āϤāĻžāĻšāϞ⧇ āφāĻŽāϰāĻž 44 āĻāϰ āĻšā§‡ā§Ÿā§‡ āĻŦ⧜ āϝ⧇ āϕ⧋āύ āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āĻāĻ­āĻžāĻŦ⧇ āϞāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŋ-

6k+40 āĻŦāĻžÂ  6k+42 āĻŦāĻž 6k+44

āĻāĻ–āύ, āĻāχ āĻĒāĻĻāϗ⧁āϞ⧋āϕ⧇ āφāĻŽāϰāĻž āϚāĻžāχāϞ⧇ āĻāĻ­āĻžāĻŦ⧇āĻ“ āϞāĻŋāĻ–āϤ⧇ āĻĒāĻžāϰāĻŋ-

 6k+40 = 6k+15+25 = 3(2k+5) + 25

6k+42 = 6k+9+33 = 3(2k+3) +33

6k+44 = 6k+9+35 = 3(2k+3) +35

āĻāĻ–āύ (2k+3) āĻŦāĻž (2k+5) āϏāĻ°ā§āĻŦāĻĻāĻž āĻŦāĻŋāĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻž, āϤāĻžāχ 3(2k+5) āĻāĻŦāĻ‚ 3(2k+3) āĻ…āĻŦāĻļā§āϝāχ āĻŦāĻŋāĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻž āĻšāĻŦ⧇āĨ¤

āϤāĻžāĻšāϞ⧇ āφāĻŽāϰāĻž āĻĒā§āϰāĻŽāĻžāĻŖ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāϞāĻžāĻŽ āϝ⧇, 44 āĻāϰ āĻšā§‡ā§Ÿā§‡ āĻŦ⧜ āϝ⧇āϕ⧋āύ āĻœā§‹ā§œ āϏāĻ‚āĻ–ā§āϝāĻžāϕ⧇ āφāϏāϞ⧇ āĻĻ⧁āχāϟāĻŋ āϝ⧌āĻ—āĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āφāĻ•āĻžāϰ⧇ āϞ⧇āĻ–āĻž āϝāĻžā§Ÿ!

āϤāĻžāĻšāϞ⧇, āĻŽā§‹āϟ 14āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āφāϛ⧇ āϝāĻžāĻĻ⧇āϰāϕ⧇ āĻĻ⧁āχāϟāĻŋ āĻŦāĻŋāĻœā§‹ā§œ āϝ⧌āĻ—āĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āĻšāĻŋāϏ⧇āĻŦ⧇ āϞāĻŋāĻ–āĻž āϝāĻžā§Ÿ āύāĻžāĨ¤ āĻāϟāĻžāχ āφāĻŽāĻžāĻĻ⧇āϰ āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ŧ āĻāϰ āωāĻ¤ā§āϤāϰāĨ¤

āĻ…āύ⧇āϕ⧇āχ āφāĻŽāĻžāĻĻ⧇āϰ āĻ•āĻžāϛ⧇ āĻāχ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋāϰ āϏāĻŽāĻžāϧāĻžāύ āĻĒāĻžāĻ āĻŋā§Ÿā§‡āϛ⧇, āϏāĻŦāĻžāϰ āĻ¸ā§āĻŦāϤāσāĻ¸ā§āĻĢā§‚āĻ°ā§āϤ āĻ…āĻ‚āĻļāĻ—ā§āϰāĻšāĻŖ āφāĻŽāĻžāĻĻ⧇āϰ āĻ…āĻ­āĻŋāĻ­ā§‚āϤ āĻ•āϰ⧇āϛ⧇āĨ¤ āϤāĻŦ⧇ āφāĻŽāϰāĻž ā§§ āϜāύ⧇āϰ āϏāĻ āĻŋāĻ• āωāĻ¤ā§āϤāϰ āĻĒā§‡ā§Ÿā§‡āĻ›āĻŋ, āϤāĻžāχ āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ŧ āĻ āĻŦāĻŋāĻœā§Ÿā§€ āĻāĻ•āϜāύ!

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ŧ āĻāϰ āĻŦāĻŋāĻœā§Ÿā§€ (Problem Weekly-26) winners list

āĻ›āĻŦāĻŋ: āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ŧ āĻāϰ āĻŦāĻŋāĻœā§Ÿā§€ āϤāĻžāϞāĻŋāĻ•āĻž

āϝāĻžāϰāĻž āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋāϰ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻžāϰ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰ⧇āϛ⧋, āϏāĻŦāĻžāχāϕ⧇ āĻ…āĻ­āĻŋāύāĻ¨ā§āĻĻāύāĨ¤ āφāĻļāĻž āĻ•āϰāĻŋ āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āϏāĻŽāĻ¸ā§āϝāĻž āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āĻāχ āĻšā§‡āĻˇā§āϟāĻž āĻ…āĻŦā§āϝāĻžāĻšāϤ āĻĨāĻžāĻ•āĻŦ⧇āĨ¤ āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āϏāĻŦāĻžāϰ āϏ⧇āϕ⧇āĻ¨ā§āĻĄ āĻĄāĻŋāĻĢāĻžāϰ⧇āĻ¨ā§āϏāĻŋāϝāĻŧāĻžāϞ āύ⧇āϗ⧇āϟāĻŋāĻ­ āĻšā§‹āĻ•!

(āφāĻŽāĻžāĻĻ⧇āϰ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž āĻĻ⧇āĻ–āĻ¤ā§‡Â āĻāχ āϞāĻŋāĻ™ā§āϕ⧇ āĻ•ā§āϞāĻŋāĻ• āĻ•āϰ⧁āύāĨ¤)

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ģ āĻāϰ āϏāĻŽāĻžāϧāĻžāύ (Problem Weekly–25 with Solution)

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ģ: āϏāĻ‚āĻ–ā§āϝāĻžāĻ­āĻžāĻŦ⧁āĻ• āϏ⧌āĻ­āĻŋāĻ• āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϧāĻžāϰāĻž āĻāĻŦāĻ‚ āϏ⧇āϟāĻŋāϰ āϝ⧋āĻ—āĻĢāϞ āύāĻŋāĻ°ā§āϪ⧟ āĻ•āϰāĻžāϰ āĻĒāĻĻā§āϧāϤāĻŋ āϏāĻŽā§āĻĒāĻ°ā§āϕ⧇ āϖ⧁āĻŦ āϏāĻŽā§āĻĒā§āϰāϤāĻŋ āĻœā§‡āύ⧇āϛ⧇āĨ¤ āϤāĻžāϰāĻĒāϰ āĻĨ⧇āϕ⧇ āϏ⧇ āϏ⧁āϝ⧋āĻ— āĻĒ⧇āϞ⧇āχ āĻŦāĻŋāĻ­āĻŋāĻ¨ā§āύ āϏāĻ‚āĻ–ā§āϝāĻž āϞāĻŋāϖ⧇ āϤāĻžāĻĻ⧇āϰ āĻŽāĻ§ā§āϝ⧇ āϕ⧋āύ⧋ āϧāĻžāϰāĻž āĻĒāĻžāĻ“ā§ŸāĻž āϝāĻžā§Ÿ āĻ•āĻŋ āύāĻž, āĻ•āĻŋāĻ‚āĻŦāĻž āϧāĻžāϰāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āĻŦ⧇āϰ āĻ•āϰāĻž āϝāĻžā§Ÿ āĻ•āĻŋāύāĻž āϏ⧇āϟāĻŋ āύāĻŋā§Ÿā§‡ āĻ­āĻžāĻŦāϤ⧇ āĻĨāĻžāϕ⧇āĨ¤ āϏ⧌āĻ­āĻŋāϕ⧇āϰ āĻŦāĻ¨ā§āϧ⧁ āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋāĻ• āϜāĻžāĻŽāĻŋ āφāĻŦāĻžāϰ āĻœā§āϝāĻžāĻŽāĻŋāϤāĻŋāϰ āϏāĻŽāĻ¸ā§āϝāĻž āĻ…āύ⧇āĻ• āĻĒāĻ›āĻ¨ā§āĻĻ āĻ•āϰ⧇āĨ¤ āϜāĻžāĻŽāĻŋāϰ āϏāĻ‚āĻ–ā§āϝāĻž āύāĻŋā§Ÿā§‡ āϚāĻŋāĻ¨ā§āϤāĻž āĻ•āϰāϤ⧇ āϖ⧁āĻŦ āĻāĻ•āϟāĻž āĻ­āĻžāϞ⧋ āϞāĻžāϗ⧇ āύāĻžāĨ¤ āĻāϜāĻ¨ā§āϝ āϏ⧌āĻ­āĻŋāĻ• āϏ⧁āϝ⧋āĻ— āĻĒ⧇āϞ⧇āχ āϜāĻžāĻŽāĻŋāϕ⧇ āϏāĻ‚āĻ–ā§āϝāĻž āϏāĻ‚āĻ•ā§āϰāĻžāĻ¨ā§āϤ āϏāĻŽāĻ¸ā§āϝāĻž āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāϤ⧇ āĻĻā§‡ā§ŸāĨ¤ āϏ⧌āĻ­āĻŋāĻ• āϜāĻžāĻŽāĻŋāϰ āϜāĻ¨ā§āϝ āϧāĻžāϰāĻžāϰ āĻāĻ•āϟāĻŋ āύāϤ⧁āύ āϏāĻŽāĻ¸ā§āϝāĻž āĻŽāύ⧇ āĻŽāύ⧇ āϚāĻŋāĻ¨ā§āϤāĻž āĻ•āϰāϞ⧋āĨ¤ āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋ āĻāϰāĻ•āĻŽ-

2, 4, 4, 1, 1, 3, 9, -1, 0, 2, 14, -3,â€Ļâ€Ļâ€Ļâ€Ļ

āĻāĻ­āĻžāĻŦ⧇ āĻāχ āϧāĻžāϰāĻžāϰ āϜāĻ¨ā§āϝ āĻ•ā§Ÿā§‡āĻ•āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āϞ⧇āĻ–āĻž āĻšāϞ⧋āĨ¤ āĻĒā§āϰāĻĨāĻŽā§‡ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋ āϜāĻžāĻŽāĻŋāϰ āĻ•āĻžāϛ⧇ āĻšāĻŋāϜāĻŋāĻŦāĻŋāϜāĻŋ āĻšāĻŋāϜāĻŋāĻŦāĻŋāϜāĻŋ āĻŽāύ⧇ āĻšāϞ⧇āĻ“ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋āϰ āĻŽāĻ§ā§āϝ⧇ āĻ•āĻŋāĻ¨ā§āϤ⧁ āĻāĻ•āϟāĻž āύāĻŋāĻ°ā§āĻĻāĻŋāĻˇā§āϟ āĻĒā§āϝāĻžāϟāĻžāĻ°ā§āύ āφāϛ⧇āĨ¤ āϝāĻĻāĻŋ āϧāĻžāϰāĻžāϟāĻŋ āĻāĻ­āĻžāĻŦ⧇ āϚāϞāϤ⧇ āĻĨāĻžāϕ⧇, āϤāĻŦ⧇ āĻĒā§āϰāĻĨāĻŽÂ ā§§ā§§ā§§ āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϰ āϝ⧋āĻ—āĻĢāϞ āĻ•āϤ āĻšāĻŦ⧇? āϜāĻžāĻŽāĻŋ āĻāχ āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋ āύāĻŋā§Ÿā§‡ āĻ…āύ⧇āĻ• āϚāĻŋāĻ¨ā§āϤāĻž āĻ•āϰ⧇āĻ“ āϕ⧋āύ āϏāĻŽāĻžāϧāĻžāύ⧇ āφāϏāϤ⧇ āĻĒāĻžāϰāϛ⧇ āύāĻžāĨ¤ āϤ⧁āĻŽāĻŋ āĻ•āĻŋ āϜāĻžāĻŽāĻŋāϕ⧇ āϏāĻžāĻšāĻžāĻ¯ā§āϝ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŦ⧇?  

Problem Weekly-25: Number-lover Souvik has recently learned about number series and the process of finding the sum of those series. Now, whenever he gets a chance, he writes down different numbers to see if there exists a series between them or if the sum of the series can be calculated. However, Souvik’s friend Geometric Jami likes geometry problems. He doesn’t like that much to think about numbers like Souvik. That’s why Souvik pushes Jami to solve number-related problems whenever he gets a chance. As it said, Souvik has thought of a new series problem for Jami. The problem is like this-

2, 4, 4, 1, 1, 3, 9, -1, 0, 2, 14, -3,â€Ļâ€Ļâ€Ļâ€Ļ
At first, the numbers seem random to Jami like HIJIBIJI HIJIBIJI but there is a pattern between these numbers. If the series does continue this way, what will be the sum of the first 111 terms? Jami is trying hard but still doesn’t know how to approach this problem. Can you help Jami to solve this problem?

 

āϏāĻŽāĻžāϧāĻžāύ: āφāĻŽāϰāĻž āϝāĻĻāĻŋ āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋ āĻĻ⧇āĻ–āĻŋ, āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋āϰ āĻŽāĻ§ā§āϝ⧇ āφāĻĒāĻžāϤāĻĻ⧃āĻˇā§āϟāĻŋāϤ⧇ āϕ⧋āύ āϏāĻŽā§āĻĒāĻ°ā§āĻ• āĻĒāĻžāĻŦā§‹ āύāĻžāĨ¤ āϤāĻŦ⧇ āϞāĻ•ā§āώ āĻ•āϰāϞ⧇ āĻĻ⧇āĻ–āĻž āϝāĻžāĻŦ⧇ āϝ⧇, āĻ•āĻŋāϛ⧁ āϏāĻ‚āĻ–ā§āϝāĻž āφāϛ⧇ āϝ⧇āϗ⧁āϞ⧋ āĻŦ⧃āĻĻā§āϧāĻŋ  āϝ⧇āĻŽāύ

 9, 14….

āφāĻŦāĻžāϰ āĻĻ⧇āĻ–āĻž āϝāĻžāĻšā§āϛ⧇, ā§­āĻŽ āĻĒāĻĻ āĻšāĻ˛ā§‹Â 9 āĻāĻŦāĻ‚ ā§§ā§§ āϤāĻŽ āĻĒāĻĻ āĻšāϞ⧋ 14āĨ¤Â  āĻāĻ•āχ āϧāĻžāϰāĻžāĻŦāĻžāĻšāĻŋāĻ•āϤāĻžā§Ÿ, ā§Šā§Ÿ āĻĒāĻĻ āĻšāϞ⧋ 4āĨ¤ āĻāĻ–āĻžāύ⧇ āĻĻ⧇āĻ–āĻž āϝāĻžāĻšā§āϛ⧇ āϝ⧇, 4, 9, 14 āĻāϰ āĻŽāĻ§ā§āϝ⧇ āĻāĻ•āϟāĻž āĻĒā§āϝāĻžāϟāĻžāĻ°ā§āύ āφāϛ⧇āĨ¤

āϤāĻžāĻšāϞ⧇ āφāĻŽāϰāĻž āϏāĻ‚āĻ–ā§āϝāĻžāϗ⧁āϞ⧋āϕ⧇ āĻāĻ­āĻžāĻŦ⧇ āύāĻŋāĻšā§‡āϰ āĻ›āϕ⧇ āϞāĻŋāĻ–āĻŋ-

2

4

4

1

1

3

9

-1

0

2

14

-3

āĻāĻ–āύ āĻ•āĻŋāĻ¨ā§āϤ⧁ āϖ⧁āĻŦ āϏāĻšāĻœā§‡āχ āφāĻŽāϰāĻž āĻ…āύ⧇āĻ•āϗ⧁āϞ⧋ āϏāĻŽā§āĻĒāĻ°ā§āĻ• āĻĒāĻžāĻšā§āĻ›āĻŋ āĨ¤ āφāϰ⧋ āϏāĻšāϜ āĻ•āϰ⧇ āĻŦāϞāϞ⧇, āĻāĻ–āĻžāύ⧇ āφāϞāĻžāĻĻāĻž āφāϞāĻžāĻĻāĻž āϚāĻžāϰāϟāĻŋ āĻĒā§āϝāĻžāϟāĻžāĻ°ā§āύ āφāϛ⧇ āϝ⧇āϟāĻž āĻāϰāĻ•āĻŽ-

2, 1, 0…â€Ļ

4, 3, 2â€Ļâ€Ļ

4, 9, 14â€Ļ..

1, -1, -3â€Ļ…

āĻĒā§āϰāĻĻāĻ¤ā§āϤ āĻĒā§āϰāĻļā§āύāĻŽāϤ⧇, 111 āϤāĻŽ āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϝ⧋āĻ—āĻĢāϞ āĻŦ⧇āϰ āĻ•āϰāϤ⧇ āĻšāĻŦ⧇ āφāĻŽāĻžāĻĻ⧇āϰāĨ¤ āϝ⧇āĻšā§‡āϤ⧁ āφāĻŽāϰāĻž āϚāĻžāϰ āϧāϰāϪ⧇āϰ āĻĒā§āϝāĻžāϟāĻžāĻ°ā§āύ āĻĒā§‡ā§Ÿā§‡āĻ›āĻŋ, 111 āϕ⧇ 4 āĻĻāĻŋā§Ÿā§‡ āĻ­āĻžāĻ— āĻ•āϰāϞ⧇ āĻ­āĻžāĻ—āĻĢāϞ āĻšāĻŦ⧇ 27, āĻ­āĻžāĻ—āĻļ⧇āώ āĻĨāĻžāĻ•āĻŦ⧇ ā§ŠāĨ¤ āĻ…āĻ°ā§āĻĨāĻžā§Ž āφāĻŽāϰāĻž āĻŦāϞāϤ⧇ āĻĒāĻžāϰāĻŋ, 111 āϟāĻŋ āĻĒāĻĻ⧇āϰ āĻŽāĻ§ā§āϝ⧇ 27āϟāĻŋ āϏāĻ‚āĻ–ā§āϝāĻž āĻĨāĻžāĻ•āĻŦ⧇ āϝāĻžāϰāĻž āĻļ⧁āϧ⧁āĻŽāĻžāĻ¤ā§āĻ°Â 1, -1, -3â€Ļ. āĻāχ āϧāĻžāϰāĻž āĻŽā§‡āύ⧇ āϚāϞāĻŦ⧇āĨ¤ āĻŦāĻžāĻ•āĻŋ āϤāĻŋāύāϟāĻŋ āϧāĻžāϰāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āĻ°ā§‡Â 28āϟāĻŋ āĻ•āϰ⧇ āĻĒāĻĻ āĻĨāĻžāĻ•āĻŦ⧇āĨ¤Â  (āĻāϟāĻž āϕ⧀āĻ­āĻžāĻŦ⧇ āφāĻŽāϰāĻž āύāĻŋāĻļā§āϚāĻŋāϤ āĻšāϞāĻžāĻŽ?)

āĻāĻ–āύ āφāϞāĻžāĻĻāĻž āĻ•āϰ⧇ āϚāĻžāϰāϟāĻŋ āϧāĻžāϰāĻž āĻŦāĻž āĻĒā§āϝāĻžāϟāĻžāĻ°ā§āύ⧇āϰ āϝ⧋āĻ—āĻĢāϞ āĻŦ⧇āϰ āĻ•āϰ⧇, āϏāĻŦāϗ⧁āϞ⧋ āĻāĻ•āϏāĻžāĻĨ⧇ āϝ⧋āĻ— āĻ•āϰāϞ⧇āχ āφāĻŽāϰāĻž 111āϟāĻŋ āĻĒāĻĻ⧇āϰ āϝ⧋āĻ—āĻĢāϞ āĻĒā§‡ā§Ÿā§‡ āϝāĻžāĻŦā§‹āĨ¤

ā§§āĻŽ āϧāĻžāϰāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇

⧍⧟ āϧāĻžāϰāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇

ā§Šā§Ÿ āϧāĻžāϰāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇

ā§ĒāĻ°ā§āĻĨ āϧāĻžāϰāĻžāϰ āĻ•ā§āώ⧇āĻ¤ā§āϰ⧇

āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ = 2

āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ = 4

āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ = 4

āĻĒā§āϰāĻĨāĻŽ āĻĒāĻĻ = 1

āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž = 28

āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž = 28

āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž = 28

āĻĒāĻĻ āϏāĻ‚āĻ–ā§āϝāĻž = 27

āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ = -1

āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ = -1

āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ = 5

āϏāĻžāϧāĻžāϰāĻŖ āĻ…āĻ¨ā§āϤāϰ = -2

28āϟāĻŋ āĻĒāĻĻ⧇āϰ āϝ⧋āĻ—āĻĢāϞ = 14(4-27)= -322

28āϟāĻŋ āĻĒāĻĻ⧇āϰ āϝ⧋āĻ—āĻĢāϞ = 14(8-27)=-266

28āϟāĻŋ āĻĒāĻĻ⧇āϰ āϝ⧋āĻ—āĻĢāϞ = 14(8+27*5) = 2002

27āϟāĻŋ āĻĒāĻĻ⧇āϰ āϝ⧋āĻ—āĻĢāϞ = 13.5(2-52) = -675

āϤāĻžāĻšāϞ⧇ 111 āϤāĻŽ āĻĒāĻĻ āĻĒāĻ°ā§āϝāĻ¨ā§āϤ āϝ⧋āĻ—āĻĢāϞ āĻšāĻŦ⧇: (-322) + (-266) + 2002 + (-675) = 739

āϚāĻžāχāϞ⧇ āφāĻŽāϰāĻž āĻ…āĻ¨ā§āϝāĻ­āĻžāĻŦ⧇āĻ“ āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋāϰ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāϤ⧇ āĻĒāĻžāϰāĻŋāĨ¤ āφāĻŽāϰāĻž āĻĒā§āϰāĻĨāĻŽ āĻĨ⧇āϕ⧇ āϚāĻžāϰāϟāĻŋ āĻ•āϰ⧇ āϏāĻ‚āĻ–ā§āϝāĻž āύāĻŋā§Ÿā§‡ āϝ⧋āĻ— āĻ•āϰāĻŋ āϤāĻžāĻšāϞ⧇ āϧāĻžāϰāĻžāϟāĻŋ āĻāϰāĻ•āĻŽ āφāϏāĻŦ⧇-

11, 12, 13 â€Ļ

āϤāĻžāĻšāϞ⧇ 11, 12, 13 â€Ļ āĻāχ āϧāĻžāϰāĻžāϰ āĻĒā§āϰāĻĨāĻŽ 28āϟāĻŋ āĻĒāĻĻ⧇āϰ āϝ⧋āĻ—āĻĢāϞ āĻŦ⧇āϰ āĻ•āϰ⧇ āϤāĻžāϰ āĻĨ⧇āϕ⧇ āĻĨ⧇āϕ⧇ 1, -1, -3â€Ļ… āĻāχ āϧāĻžāϰāĻžāϟāĻŋāϰ 28 āϤāĻŽ āĻĒāĻĻ āĻŦāĻŋā§Ÿā§‹āĻ— āĻ•āϰāϞ⧇āχ āφāĻŽāϰāĻž āωāĻ¤ā§āϤāϰ āĻĒā§‡ā§Ÿā§‡ āϝāĻžāĻŦā§‹! (āĻāϟāĻž āĻ•āĻŋ āĻ āĻŋāĻ•? āϝāĻžāϚāĻžāχ āĻ•āϰ⧇ āĻĻ⧇āĻ–ā§‹ āϤ⧋!)

āϤāĻžāĻšāϞ⧇, 739 āϏāĻ‚āĻ–ā§āϝāĻžāϟāĻŋ āĻšāĻšā§āϛ⧇ āφāĻŽāĻžāĻĻ⧇āϰ āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ģ āĻāϰ āωāĻ¤ā§āϤāϰāĨ¤

āĻ…āύ⧇āϕ⧇āχ āφāĻŽāĻžāĻĻ⧇āϰ āĻ•āĻžāϛ⧇ āĻāχ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋāϰ āϏāĻŽāĻžāϧāĻžāύ āĻĒāĻžāĻ āĻŋā§Ÿā§‡āϛ⧇, āϏāĻŦāĻžāϰ āĻ¸ā§āĻŦāϤāσāĻ¸ā§āĻĢā§‚āĻ°ā§āϤ āĻ…āĻ‚āĻļāĻ—ā§āϰāĻšāĻŖ āφāĻŽāĻžāĻĻ⧇āϰ āĻ…āĻ­āĻŋāĻ­ā§‚āϤ āĻ•āϰ⧇āϛ⧇āĨ¤ āϤāĻŦ⧇ āφāĻŽāϰāĻž ⧍ āϜāύ⧇āϰ āϏāĻ āĻŋāĻ• āωāĻ¤ā§āϤāϰ āĻĒā§‡ā§Ÿā§‡āĻ›āĻŋ, āϤāĻžāχ āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ģ āĻ āĻŦāĻŋāĻœā§Ÿā§€ āĻĻ⧁āχāϜāύ!

āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ģ āĻāϰ āĻŦāĻŋāĻœā§Ÿā§€ (Problem Weekly-25) winners list

āĻ›āĻŦāĻŋ: āϏāĻžāĻĒā§āϤāĻžāĻšāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž-⧍ā§Ģ āĻāϰ āĻŦāĻŋāĻœā§Ÿā§€ āϤāĻžāϞāĻŋāĻ•āĻž

āϝāĻžāϰāĻž āϏāĻŽāĻ¸ā§āϝāĻžāϟāĻŋāϰ āϏāĻŽāĻžāϧāĻžāύ āĻ•āϰāĻžāϰ āĻšā§‡āĻˇā§āϟāĻž āĻ•āϰ⧇āϛ⧋, āϏāĻŦāĻžāχāϕ⧇ āĻ…āĻ­āĻŋāύāĻ¨ā§āĻĻāύāĨ¤ āφāĻļāĻž āĻ•āϰāĻŋ āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āϏāĻŽāĻ¸ā§āϝāĻž āϏāĻŽāĻžāϧāĻžāύ⧇āϰ āĻāχ āĻšā§‡āĻˇā§āϟāĻž āĻ…āĻŦā§āϝāĻžāĻšāϤ āĻĨāĻžāĻ•āĻŦ⧇āĨ¤ āϤ⧋āĻŽāĻžāĻĻ⧇āϰ āϏāĻŦāĻžāϰ āϏ⧇āϕ⧇āĻ¨ā§āĻĄ āĻĄāĻŋāĻĢāĻžāϰ⧇āĻ¨ā§āϏāĻŋāϝāĻŧāĻžāϞ āύ⧇āϗ⧇āϟāĻŋāĻ­ āĻšā§‹āĻ•!

(āφāĻŽāĻžāĻĻ⧇āϰ āĻ…āĻ¨ā§āϝāĻžāĻ¨ā§āϝ āĻ—āĻžāĻŖāĻŋāϤāĻŋāĻ• āϏāĻŽāĻ¸ā§āϝāĻž āĻĻ⧇āĻ–āĻ¤ā§‡Â āĻāχ āϞāĻŋāĻ™ā§āϕ⧇ āĻ•ā§āϞāĻŋāĻ• āĻ•āϰ⧁āύāĨ¤)