সাপ্তাহিক সমস্যা-০৯: আমাদের পরিচিত জ্যামিতিক জামি একটি পুরনো গাড়ি কিনেছে। গাড়ি নিয়ে কোথাও গেলে মোট কত দুরত্ব অতিক্রম করা হয়েছে, সেটি দেখা যায়। কিন্তু ঝামেলা হলো, গাড়ির ডিসপ্লে বোর্ডে ৪ অঙ্কটি দেখায় না। এর মানে, গাড়িটিতে যে সংখ্যাগুলো পর্যায়ক্রমে দেখায় তা হলো- ০, ১, ২, ৩, ৫, ৬, ৭, ৮, ৯, ১০, ১১, ১২, ১৩, ১৫……ইত্যাদি। যাই হোক, জামি একদিন সকালে নিজের বাসা থেকে গাড়ি চালিয়ে তার বন্ধু সংখ্যাভাবুক সৌভিকের বাসায় বেড়াতে গেল। সৌভিকের বাড়িতে পৌঁছানোর পর জামি দেখলো যে, গাড়িতে মোট ২০২৩ কি. মি. দুরত্ব দেখাচ্ছে।
জামি তার বাসা থেকে সৌভিকের বাসার আসল দুরত্ব বের করতে চায়। তুমি কি জামিকে সাহায্য করতে পারবে?
Problem Weekly-09: Our known guy, Geometric Jami, has bought an old car. From the display board of the car, it can be seen how far the car has traveled in a trip. But the problem is that the particular digit “4” does not show in the display board of the car. This means that the numbers that appear in the car periodically are- 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15…and so on. One morning Jami came out of his house and drove to his friend Number-lover Souvik’s house. Upon reaching Souvik’s house, Jami saw that the car showed a total distance of 2023 km.
Jami wanted to calculate the actual distance from his house to the house of Souvik. Can you help Jami to find the answer?

সমাধান: এ সমস্যা সমাধানের শুরুতেই চলো একটা ছক করে ফেলি। গাড়িতে দেখানো অতিক্রান্ত দুরত্ব বাস্তবে কত দুরত্ব হবে, তার একটা ধারণা পাওয়া যাবে।  

আসল অতিক্রান্ত দুরত্ব

গাড়িতে দেখানো অতিক্রান্ত দুরত্ব

৫ (কেননা গাডিতে ৪ সংখ্যাটি দেখায় না)

১০

১০

১১

১১

১২

১২

১৩

১৩

১৫ (কেননা গাডিতে ৪ সংখ্যাটি দেখায় না)

১৪

১৬

ছক: গাড়িতে অতিক্রান্ত দুরত্ব বনাম আসল দুরত্ব

এখান থেকে বোঝা যাচ্ছে যে, গাড়িতে দেখানো দুরত্ব আর প্রকৃত অতিক্রান্ত দুরত্ব একই না। তাহলে আমরা বলতে পারি গাড়িতে যত কিলোমিটার দেখাবে আসল দুরত্ব তার চেয়ে কম হবে (তার থেকে কি বেশি হওয়া সম্ভব?)।
আচ্ছা কত কম হবে বলে তোমাদের মনে হয়? ১/ ২/ ৫ না আরো অনেক বেশি? চলো দ্রুত কিছু হিসেব করে ফেলি! 

একটু মাথা খাটালে আমরা বুঝবো যে, ১ থেকে শুরু করে গাড়িতে যে সংখ্যা দেখাবে এর মধ্যে যতগুলো ৪ অংক বিশিষ্ট সংখ্যা রয়েছে, ঠিক তত কম হবে আমাদের প্রকৃত অতিক্রান্ত দুরত্ব! কিছুটা কঠিন লাগছে কথাটা? তাহলে কয়েকবার করে পড়ে নিচের সমাধানের সাথে মিলিয়ে নাও।
তাহলে আমরা ঝটপট বের করে ফেলি, ১ থেকে ২০২৩ এর মধ্যে কতগুলো সংখ্যায় ৪ অঙ্কটি আছে।

১ থেকে ৯৯ এর মধ্যে ৪ অঙ্ক রয়েছে মোট- ১৯ টি সংখ্যায় (৪, ১৪, ২৪, ৩৪, ৪০, ৪১, ৪২, ৪৩, ৪৪, ৪৫, ৪৬, ৪৭, ৪৮, ৪৯, ৫৪, ৬৪, ৭৪, ৮৪, ৯৪)।

একইভাবে, ১০০ থেকে ৯৯৯ এর মধ্যে ৪ অঙ্কটি রয়েছে মোট-  (১৯ × ৮) +১০০ = ২৫২ বার।

একই ভাবে, ১০০০ থেকে ১৯৯৯ এর মধ্যে ৪ অঙ্কটি রয়েছে মোট-  (১৯ × ৯) + ১০০ = ২৭১ বার।

একইভাবে, ২০০০ থেকে ২০২৩ এর মধ্যে ৪ অঙ্কটি রয়েছে মোট- বার।

(আচ্ছা, এই হিসেবগুলো আমরা কি ঠিকঠাক করতে পারলাম? একটু মিলিয়ে নিও তো!)

তাহলে ১ থেকে ২০২৩, এই ব্যবধানে মোট সংখ্যা যেখানে ৪ অঙ্কটি আছে =  ১৯ + ২৫২ + ২৭১ + ২ = ৫৪৪ টি

তাহলে জ্যামিতিক জামির বাসা থেকে সংখ্যাভাবুক সৌভিকের বাসার আসল দুরত্ব হলো-  (২০২৩-৫৪৪) = ১৪৭৯ কিলোমিটার

এটাই আমাদের এ সপ্তাহের গাণিতিক সমস্যার উত্তর। অনেকেই আমাদের কাছে এই সমস্যাটির সমাধান পাঠিয়েছেন, আপনাদের স্বতঃস্ফূর্ত অংশগ্রহণ আমাদের অভিভূত করেছে। মোট ৪ জনের সঠিক উত্তর পেয়েছি আমরা, তাই সাপ্তাহিক সমস্যা-০৯ এ আমাদের মোট বিজয়ী ৪ জন!

Problem Weekly-09 (সাপ্তাহিক সমস্যা-০৯)

যারা উত্তর পাঠিয়েছেন, সবাইকে অভিনন্দন। আশা করি আপনাদের সমস্যা সমাধানের এই যাত্রা অব্যাহত থাকবে। সবার সেকেন্ড ডিফারেন্সিয়াল নেগেটিভ হোক!

(আমাদের অন্যান্য গাণিতিক সমস্যা দেখতে এই লিঙ্কে ক্লিক করুন।)